

IDEAS GENERALES

- ¿Qué es la Química Orgánica?
- "Es la Química de los compuestos del Carbono", el término Orgánica proviene del "derivados de organismo vivos". Ejemplo: Azúcar, Urea, Almidón, Ceras, Aceites vegetales, etc.

PREGUNTAS PREVIAS

• ¿Cuál es la configuración electrónica del Carbono (Z=6)?

PREGUNTAS PREVIAS

 ¿Cuál es el período y familia del Carbono?

COMPUESTOS QUÍMICOS

Instituto Claret

 ¿Cuál es la diferencia entre los compuesto orgánicos e inorgánicos?

Compuestos orgánicos

- Bajo punto de ebullición y de fusión en algunos casos
- Malos conductores de la electricidad
- Malos conductores de calor
- Solubles en agua en algunos casos

Compuestos inorgánicos

- Elevado punto de ebullición y de fusión
- Las sales son conductores de electricidad en medio acuoso
- Malos conductores del calor
- Solubles en agua a temperatura ambiente en algunos casos

IDEAS GENERALES

- Todos los compuestos considerados como orgánicos contienen Carbono.
- Los compuestos de Carbono son mucho más numerosos que los compuestos conocidos del resto de los elementos.

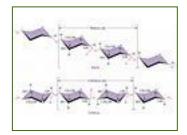
El carbono en la naturaleza

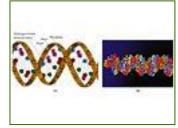
El carbono es un elemento no metálico que se presenta en formas muy variadas.

Puede aparecer **combinado**, formando una gran cantidad de compuestos, o **libre** (sin enlazarse con otros elementos).

▶ Combinado

- En la atmósfera: en forma de dióxido de carbono CO₂
- En la corteza terrestre: formando carbonatos, como la caliza CaCO₃
- En el interior de la corteza terrestre: en el petróleo, carbón y gas natural




■ En la **materia viva** animal y vegetal: es el componente esencial y forma parte de compuestos muy diversos: glúcidos, lípidos, proteínas y ácidos nucleicos.

En el cuerpo humano, por ejemplo, llega a representar el 18% de su masa.

Lípidos

Artesano adenasvida, al servácidos adeleicos cación

El carbono en la naturaleza

▶ Libre

Diamante

Variedad de carbono que se encuentra en forma de cristales transparentes de gran dureza. Es una rara forma que tiene su origen en el interior de la Tierra donde el carbono está sometido a temperaturas y presiones muy elevadas.

Los átomos de carbono forman una red cristalina atómica en la que cada átomo esta unido a los cuatro de su entorno por fuertes enlaces covalentes.

No hay electrones móviles. Esto explica su extraordinaria dureza, su insolubilidad en cualquier disolvente y su nula conductividad eléctrica.

Grafito

Variedad de carbono muy difundida en la naturaleza. Es una sustancia negra, brillante, blanda y untosa al tacto. Se presenta en escamas o láminas cristalinas ligeramente adheridas entre si, que pueden resbalar unas sobre otras.

Los átomos de carbono se disponen en láminas planas formando hexágonos. Cada átomo está unido a otros tres por medio de enlaces covalentes.

El cuarto electrón se sitúa entre las láminas y posee movilidad. Por esto el grafito es fácilmente exfoliable y un excelente conductor del calor y la electricidad. de la vida, al servicio de la Educación

TIPOS DE CARBONO

Terciario -

Si el átomo de carbono está unido a tres átomos de carbono.

Cuaternario

Si el átomo de carbono está unido a cuatro átomos de carbono.

ria

Primario .

Si el átomo de carbono está unido a un solo átomo de carbono.

····· Secundario

 CH_3

 $CH_3 - CH_2 - CH - CH_3 - C \stackrel{\frown}{=} CH_3$

Si el átomo de carbono está unido a dos átomos de carbono.

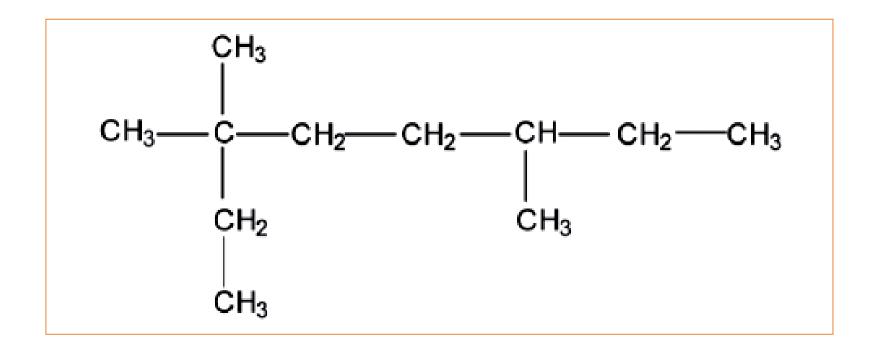
HIBRIDACIÓN DEL CARBONO

Hibridación	Enlace	Ángulo de enlace	Geometría	Ejemplo
sp³	simple; C — C	109,5°	tetraédrica	CH ₃ — CH ₃
sp ²	doble; C = C	120°	trigonal plana	CH ₂ =CH ₂
sp	triple; C≡C	180°	lineal	CH≡CH

LONGITUD DE ENLACE

Tipo de enlace	Longitud de enlace (Å)	Energía de enlace (kJ mol ⁻¹)
C—C	1,54	348
c=c	1,34	614
c≡c	1,20	839

PREGUNTA 1

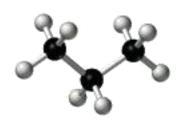

En la siguiente molécula, ¿cuál enlace carbono – carbono es de menor longitud?

1 2 3 4 5 6
$$CH_3 - CH = CH - C \equiv C - CH_3$$

PREGUNTA 2

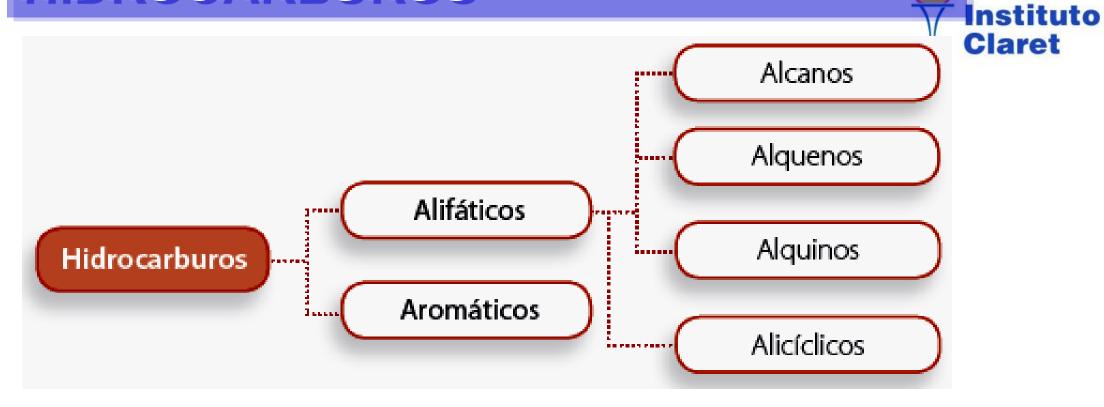
Identifique cada uno de los átomos de carbono de esta molécula como : Primario , Secundario, terciario y cuaternario.-

IDEAS GENERALES


- ¿Qué son los Hidrocarburos?
- Compuestos orgánicos simples debido a que están formados solo por átomos de carbono e hidrógeno. Los hidrocarburos se agrupan en dos grandes tipos: alifáticos y aromáticos.

Formulas de los compuestos de carbono

Como todos los compuestos químicos, las sustancias orgánicas se representan mediante fórmulas. Pero, debido a su diversidad y complejidad, además de la *fórmula molecular*, se suelen utilizar la *fórmula semidesarrollada* y la *desarrollada*.


Ejemplo

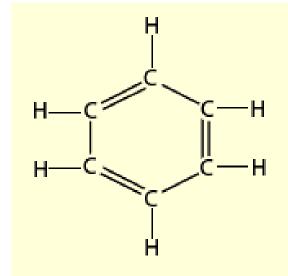
Compuesto	Fórmula	Fórmula	Fórmula
	molecular	semidesarrollada	desarrollada
Propano	$\mathrm{C_3H_8}$	CH ₃ -CH ₂ -CH ₃	H H H

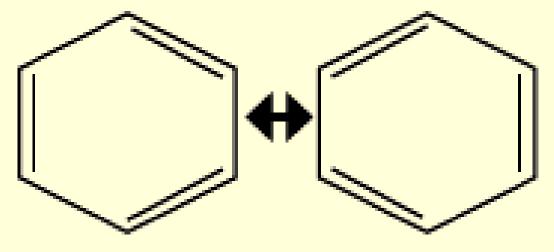
HIDROCARBUROS

ALIFÁTICOS

USS	
W	Instituto
	Claret

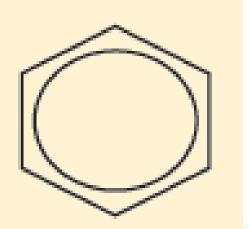
Hidrocarburo alifático	Tipo de enlace	Fórmula general	Propiedades físicas (punto de ebullición, punto de fusión y solubilidad)
Alcano	Simple	C _n H _{2n+2}	Los puntos de ebullición y fusión y la solubi- lidad aumentan gradualmente en función de las masas molares.
Alqueno	Doble	C _n H _{2n}	Son semejantes a las de los alcanos con igual número de átomos de carbonos.
Alquino	Triple	C _n H _{2n-2}	Son similares a las de los alcanos y alquenos con igual número de átomos de carbonos, pero sus puntos de ebullición y fusión son algo más altos.


ALIFÁTICOS ALICÍCICLOS



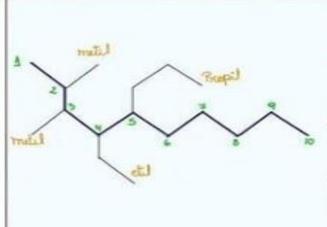
Hidrocarburo alicíclico	Tipo de enlace	Fórmula general	Ejemplo
Cicloalcano	Simple	C _n H _{2n}	
Cicloalqueno	Doble	C _n H _{2n-2}	
Cicloalquino	Triple	C_nH_{2n-4}	

AROMÁTICOS



Estructura del Benceno

Estructura resonantes del Benceno


Estructura Híbrida del Benceno

Reglas de nomenclatura

- 1 Se debe elegir la cadena más larga dandole más prividad a aquella que
 - · Centingo más enlaces multiples
 - · Busento mayor contidad de atemes de corbeno · Busento mayor contidad de xádicales.
- ② Se debe enumerar la cadena desde el estremo más coccano al:
 - · Enlace multiple · Radical
- 3 Si nombram los radicales indicando su posición (Se indico con un número il corbono de la cadena principal al que se encuentra unido
- (9) Si rembra la cadema principal, indicando il número de carbones y la posición de los enlaces multiples (solo se los hay)
- (5) Se overna el nombre de la modécula partiendo per los readicales En orden alfabitico ez luego la cadema primapal

- 1) Elección de la cadema principal. El Exemplo Gene 10 Coochemas = DECANO
- @mumbran la cadema principal desde un estimo al être. El muímere 1 se asignio al primier punto de Malerancia (RADICAL)
- 3 nombran cada xamilicación difeants en la cadena principal perhotan les sustituyentes una
- (4) Alfabetizar les revolitagentes (Etil Metil Propsi)
- (5) Esocibir el nombre completo 4-etil-2,3-dimetil-5 propil decamo

NOMENCLATURA DE HIDROCARBUROS

	ns	st	it	ut	0
(Cla	ar	et	t	

Nº de carbonos	Prefijo numeral (raíz)	Nº de carbonos	Prefijo numeral (raíz)
1	Met_	6	Hex_
2	Et_	7	Hept_
3	Prop_	8	Oct_
4	But_	9	Non_
5	Pent_	10	Dec_

NOMENCLATURA DE HIDROCARBUROS

	nstituto	
(Claret	

Metilo	CH ₃ —		
Etilo	CH ₃ CH ₂ —		
n-propilo	CH ₃ CH ₂ CH ₂ —		
Isopropilo	CH₃CHCH₃		
n-butilo	iso-butilo sec-butilo ter-butilo		ter-butilo
			ÇH₃

•Escriba la fórmula desarrollada de los siguientes compuestos:

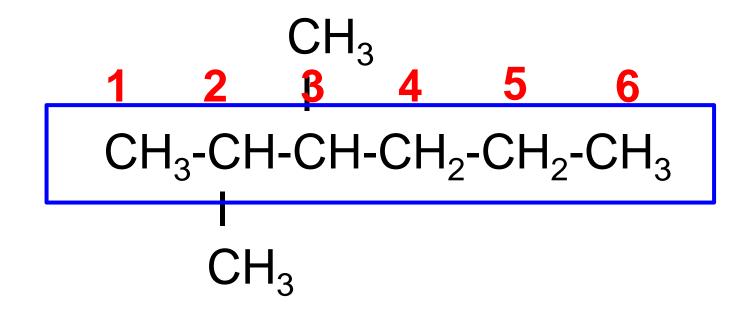
N°	Nombre	Compuesto
1	1-buteno	
2	2-penteno	
3	3,4-dimetil-2-pentano	
4	5-etil-2,4,5-trimetil-3-hepteno	
5	2,3-dimetilhexano	
6	2,2,5-trimetil-3-heptino	
7	3 etil-2,3 dimetil-5 propil-octano	
8	2,2,4,4 tetrametil 6 propil -nonano	

- Escribe las fórmulas semidesarrolladas de los compuestos dados.
- Actividad Evaluada con un 15 % (fecha de entrega Jueves 12 a viernes 13 en cuaderno de asignatura.

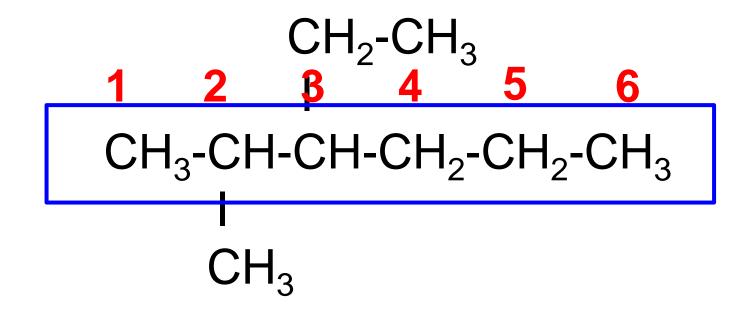
- a) 2,3-dimetil-2-hexeno
- b) 2,4-dimetil-3,3,4-trietilheptano
- c) 3-etil-1-pentino
- d) 3-metil-2-propil-1,5-hexadieno
- e) 4-metil-2-octino
- f) 3-etil-2-metil-hexano
- g) 2,3-dimetil-1,4-heptadieno
- h) 4-metil-2-pentino
- i) 3,4-dietil-1-hepteno
- j) 3-metil-4-propil-1,6-octadiino
- k) 3,5-dietil-2,4,6-trimetil-heptano
- 1) 2,3-dietil-2,6-dimetil-5-propil-decano

DETERMINE LA FÓRMULA CONDENSADA PARA LOS SIGUEINTES COMPUESTOS:

- 1) 1,1,2-trimetil-pentano
- 2) 1,5-octadieno
- 3) 3-hexil-4-pentil-2-metil-decaano
- 4) 3,4,5-trimetil- hexeno
- 5) 1-etil-3-metil-5-propil hexano
- 6) 1,2-dimetilnoneno
- 7) 1,3,5-trimetil-hepteno
- 8) 2-etil-1,4-dimetil- deceno
- 9) 1- metil propano
- 10) 2,3-etil- butano
- 11) 1-metil-2-buteno
- 12) 3 butil- 2 etil 5 metil- deceno



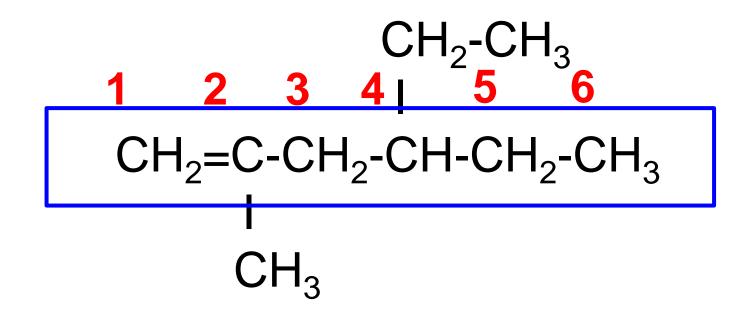
n-hexano


2-metilhexano

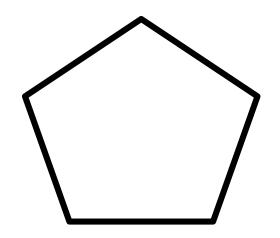
2,3-dimetilhexano

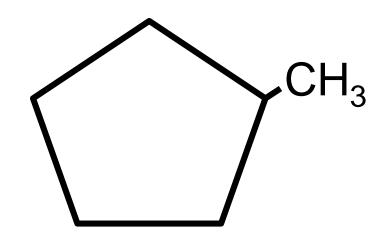
3-etil-2-metilhexano

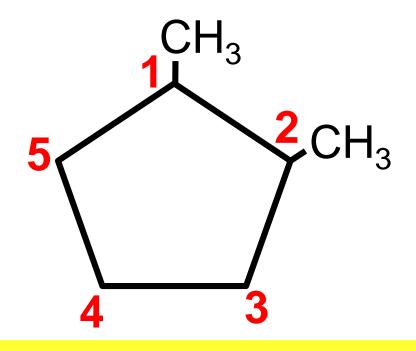
2-metilhexano

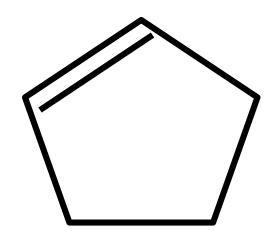


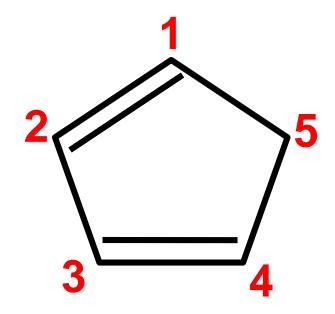
1-hexeno


1,2-hexadieno


4-etil-2-metil-1-hexeno


ciclopentano


metilciclopentano


1,2-dimetilciclopentano

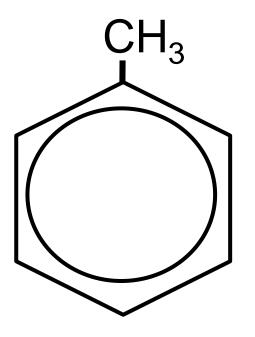
ciclopenteno

1,3-ciclopentadieno

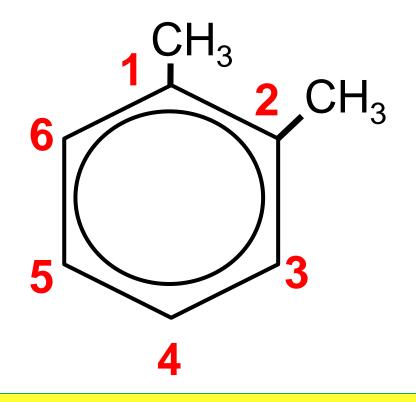
DIBUJE LOS SIGUIENTES CICLOS ORGANICOS

Instituto Claret

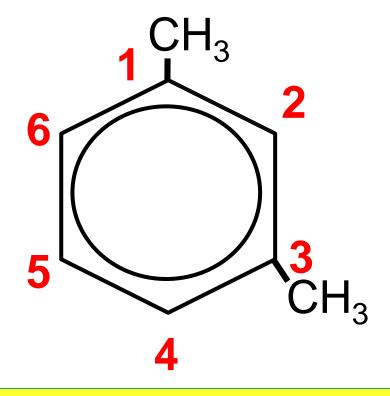
EN SU CUADERNO:


- a) 1-etil-1,2-dimetilciclopentano
- b) 1,2-dimetil-1-etilciclohexano.
- c) 4-etil-3-metil-ciclopenteno
- d) 1,1,3-trimetilciclobutano
- e) 1,1,2,2-tetrametilciclopropano
- f) 1,2-dimetilciclohexano
- g) 1-metil-2-propilciclooctano
- h) 1,3,5-tripropilciclohexano
- i) 1-etil-3-metilciclobutano
- j) 5-metil-4-etilciclopenteno
- k) 1,2-dibutil-1-etilciclopentano
- l) 1,5-ciclooctadieno

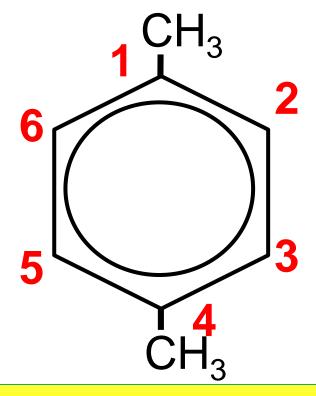
Cuestionario repaso evaluación


- 1)¿ Que caracteriza a un alcano, alqueno y alquino?
- 2)¿Que elementos conforman un hidrocarburo?
- 3)¿Qué es la tetravalencia del carbono?
- 4) Defina las características de los carbonos : primarios , secundarios , terciarios y cuaternarios.
- 5)Describa las características de hibridaciones sp3, sp2, sp:
- 6)Cual es la estructura del ciclo hexano:

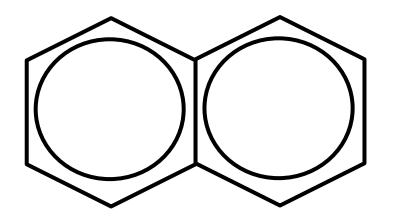
metilbenceno (tolueno)



1,2 -dimetilbenceno

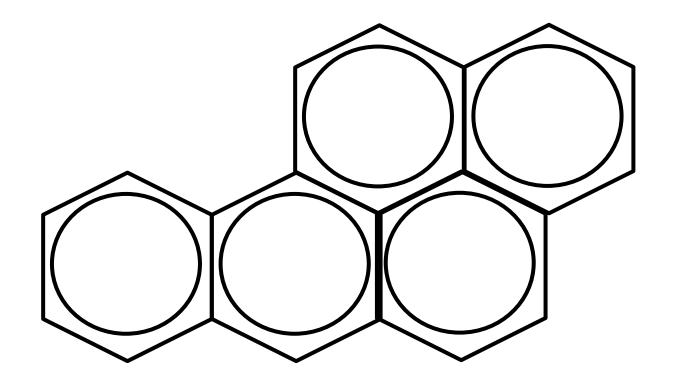

o-dimetilbenceno
o-dimetilbenceno

1,3-dimetilbenceno
o
m-dimetilbenceno



1,4-dimetilbenceno

o
p-dimetilbenceno


icio de la Educación

Naftaleno

Benzopireno

PREGUNTAS PREVIAS

Instituto
Claret

 ¿Cuál es el nombre IUPAC de la siguiente molécula?

$$CH_3 - CH_2 - CH_3$$

propano

PREGUNTAS PREVIAS

Instituto Claret

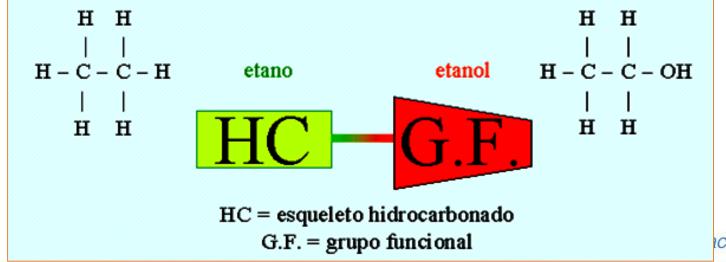
 ¿Cuál es el nombre IUPAC de la siguiente molécula?

2-metilbutano

PREGUNTAS PREVIAS

Instituto Claret

 ¿Cuál es el nombre IUPAC de la siguiente molécula?


2,4-dimetilheptano

GRUPOS FUNCIONALES

¿QUÉ SON LOS GRUPOS FUNCIONALES?

- Es un átomo o un grupo de átomos distinto del Claret hidrógeno presente en una molécula orgánica que determina las propiedades químicas de dicha molécula.
- El grupo funcional es el principal responsable de la reactividad química, es decir, compuestos con igual grupo funcional muestran las mismas propiedades.
- Algunas moléculas orgánicas poseen más de un grupo funcional igual o distinto.

ALCOHOL

255	and the same
V	Instituto
V	Claret
	Claret

FÓRMULA GENERAL	GRUPO FUNCIONAL	EJEMPLO	NOMBRE
R-OH	-OH	CH ₃ -OH	metanol
		CH ₃ -CH ₂ -OH	etanol
		CH_3 - $(CH_2)_2$ - OH	propanol
		CH ₃ -(CH ₂) ₃ -OH	butanol
		OH-CH ₂ -CH ₂ -OH	1,2-etanodiol

ALCOHOL

Primario

Secundario

$$CH_3$$
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3
 CH_3

etanol

2-propranol

2-metil-2-propranol

ÉTER

FÓRMULA GENERAL	GRUPO FUNCIONAL	EJEMPLO	NOMBRE
R-O-R	-0-	CH ₃ -O-CH ₃	dimetiléter
		CH ₃ -CH ₂ -O-CH ₃	etilmetiléter
		CH ₃ -(CH ₂) ₂ -O-CH ₃	metilpropiléter
		CH ₃ -(CH ₂) ₃ -O-CH ₃	butilmetiléter

ALDEHÍDO

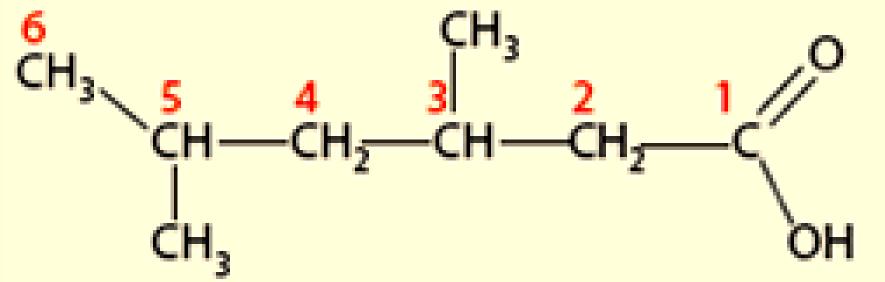
USS	
V	Instituto
	Claret

FÓRMULA GENERAL	GRUPO FUNCIONAL	EJEMPLO	NOMBRE
0	0	H-CHO	formaldehído
	II	CH ₃ -CHO	etanal
R-C-H	-C-H	CH ₃ -CH ₂ -CHO	propanal
		CH ₃ -(CH ₂) ₂ -CHO	butanal
		CH ₃ -(CH ₂) ₃ -CHO	pentanal

CETONA

FÓRMULA GENERAL	GRUPO FUNCIONAL	EJEMPLO	NOMBRE
O II	O II	CH ₃ -CO-CH ₃	dimetilcetona o propanona
R-C-R	-C-	CH ₃ -CO-CH ₂ -CH ₃	etilmetilcetona o butanona
		CH ₃ -(CH ₂) ₃ -CO-CH ₃	butilmetilcetona o 2-hexanona

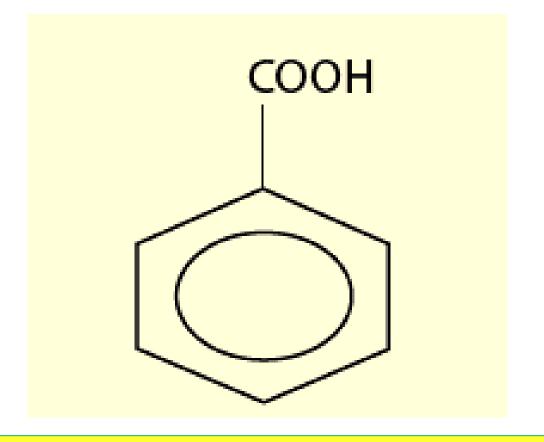
ÁCIDO CARBOXÍLICO


FÓRMULA GENERAL	GRUPO FUNCIONAL	EJEMPLO	NOMBRE
O	O II	H-COOH	ácidometanoico (ácido fórmico)
R-C-OH	-C-OH	CH ₃ -COOH	ácidoetanoico (ácido acético)
		CH ₃ -(CH ₂) ₂ -COOH	ácidobutanoico
		CH ₃ -(CH ₂) ₃ -COOH	ácidopentanoico
		CH ₃ -(CH ₂) ₄ -COOH	Ácidohexanoico

Instituto

Claret

ÁCIDO CARBOXÍLICO



ácido-3,5-dimetilhexanoico

ÁCIDO CARBOXÍLICO

ácidobenzoico

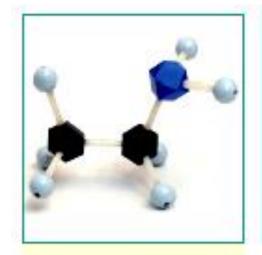
ÉSTERES

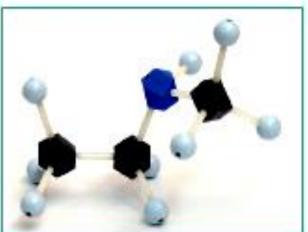
				Instituto	
	FÓRMULA GENERAL	GRUPO FUNCIONAL	EJEMPLO	NOMBRE	Claret
	O II	O II	CH ₃ -COO-CH ₃	etanoato de metilo	
	R-C-O-R	-C-O-R	H-COO-CH ₃	metanoato de metilo	
			CH ₃ -(CH ₂) ₂ -COO-CH ₃	butanoato de metilo	

AMINAS

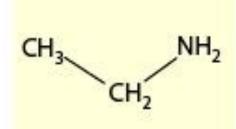
FÓRMULA GENERAL	GRUPO FUNCIONAL	EJEMPLO	NOMBRE
		CH ₃ -NH ₂	metilamina
R-NH ₂	-NH ₂	CH ₃ -CH ₂ -NH ₂	etilamina

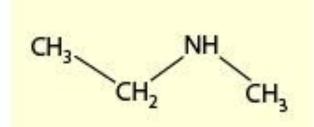
AMINAS

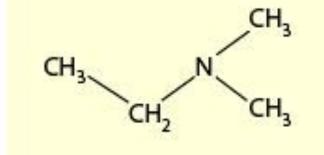

III's			
\mathbf{P}	П	ma	aria

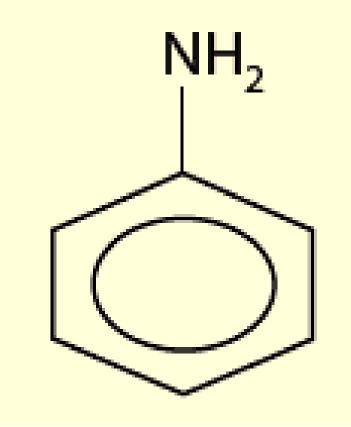

Amina

$$R - NH - R$$


AMINAS







etilamina

n-metiletanamina

n,n-dimetiletanamina

aminabenceno (anilina)

AMIDAS

FÓRMULA GENERAL	GRUPO FUNCIONAL	EJEMPLO	NOMBRE
R-CO-NH ₂	-CO-NH ₂	CH ₃ -CO-NH ₂ CH ₃ -CH ₂ -CO-NH ₂	etanamida propanamida

HALÓGENOS

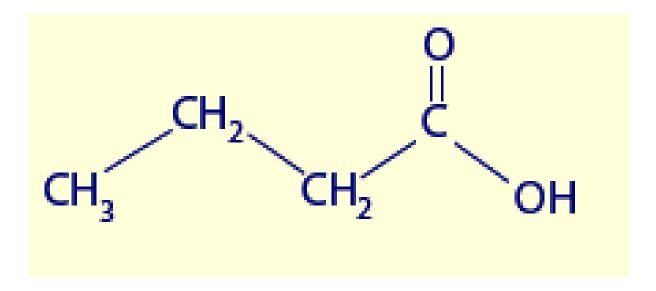
USS	
V	Instituto
W	Claret

GRUPO FUNCIONAL	EJEMPLO	NOMBRE
-X	CH ₃ -Cl	clorometano
	CH ₂ -Cl ₂	diclorometano
	CH-Cl ₃	triclorometano
	CH ₃ -CH ₂ -Cl	cloroetano
	CI-CH ₂ -CH ₂ -CI	1,2-dicloroetano
	FUNCIONAL	FUNCIONAL CH_3-CI CH_2-CI_2 $CH-CI_3$ CH_3-CH_2-CI

Instituto Claret

 ¿Cuál el nombre IUPAC de la siguiente molécula orgánica?

2,4-pentanodiol


Instituto Claret

 ¿Cuál el nombre IUPAC de la siguiente molécula orgánica?

dimetiléter

Instituto Claret

 ¿Cuál el nombre IUPAC de la siguiente molécula orgánica?

ácidobutanoico

Instituto Claret

 ¿Cuál el nombre IUPAC de la siguiente molécula orgánica?

$$CH_3 - CH_2 - CH_2 - CH_2 - C$$

pentanal

Instituto
Claret

 ¿Qué grupos funcionales están presentes en la siguiente molécula orgánica?

Alcohol y Amina